"After graduating in biology from the University of Guelph, Lambert joined Professor Timothy Hughes’ group, which is among world-leading in studying how cells read the genome. Each cell in the human body contains the exact same genetic information, yet brain cells are very different from heart cells, which are again different from, say, cells that make up the liver. What makes one cell different from another is a set of genes that is switched on at any given time. In fact, all biological processes, from intricate patterning of butterfly wings to foetal development, are underpinned by the right genes being switched on in the right cells at the right time. When this process breaks down, it can lead to disease.

During his PhD, Lambert has been studying proteins called transcription factors (TFs), which bind DNA to turn genes on or off. TFs do this by triggering or halting, respectively, the transcription of genes' sequences into instructions for making proteins, the building blocks of life. TFs recognize specific landing sequences in the DNA, and Lambert’s project focused on finding the diversity of sites for TFs in different organisms. Contrary to previous thinking, Lambert found that similar TFs from closely related species often recognize different sites in DNA. He then showed that the same is true across the tree of life suggesting that TF binding differences may be part of the driving force behind evolution.

This is Lambert’s second Dorrington Research Award, having first received it while he was a Master’s student. “With the generous support from the Dorrington family, I continued my research in what I think is one of the most fascinating questions in biology. The hope is that if we can understand how cells normally perform these functions we’d have a better clue at how to fix it when it goes awry in disease,” says Lambert.

Expecting to graduate in less than five years from starting his PhD, Lambert is planning his next move. “For my postdoc, I would like to join a lab where I can combine what I’ve learned about gene transcription in my PhD with human genetics to better predict our risk for disease,” he says.

The award was established by the Dorrington family in 2006 as a tribute to Dr. Jennifer Dorrington, who was a professor in the Banting and Best Department of Medical Research. Dorrington’s pioneering research greatly advanced our understanding of reproductive biology and ovarian cancer."

See full story here